Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 656-662, 2021.
Article in Chinese | WPRIM | ID: wpr-881372

ABSTRACT

Objective@# To investigate the effects of graphene on the proliferation, migration and cell morphology of dental pulp stem cells (DPSCs).@*Methods@#Graphene powder was prepared by the oxidation-reduction method, and a 0.5 mg/mL graphene dispersion was prepared. Raman spectroscopy and atomic force microscopy were used to characterize the structure and surface morphology of graphene. DPSCs were isolated and cultured in vitro. MTT assay was used to detect the effects of different concentrations of graphene dispersions (0, 1, 5, 10, 20, 50, 100 μg/mL) on the proliferation and wound healing assay was used to detected the migration abilities of DPSCs. The effects of graphene on the morphology of DPSCs were observed by immunofluorescence staining. @*Results @# In the present study, compared with the control group (0 μg/mL), the proliferation of DPSCs in the 100 μg/mL group was inhibited at 72 h (P < 0.05), and the proliferation of DPSCs in the other groups was not significantly affected (P > 0.05). Graphene dispersions at 10 and 20 μg/mL promoted the migration of DPSCs (P < 0.05). After being cultured in 20 μg/mL graphene dispersions for 3 days, the DPSCs showed a large and orderly cytoskeletal structure, and the spread area of cells was not significantly different from that of the control group (0 μg/mL) (P > 0.05), while some cells had the morphological characteristics of nerve cells.@* Conclusion @# Graphene has good biocompatibility and is expected to be a suitable material for tissue engineering within fitting concentration.

SELECTION OF CITATIONS
SEARCH DETAIL